Renal fibrosis is a common manifestation in the progression of chronic kidney disease (CKD) to kidney failure. Currently, there is no available therapy to prevent the progression of renal fibrosis. Poricoic acid A (PAA) isolated from Poria cocos shows notable antifibrotic effects. However, its potential mechanism is still unclear. This study aimed to evaluate the effects and the potential mechanisms of PAA against renal fibrosis. A mouse model of renal fibrosis was established using unilateral ureteral obstruction (UUO). We showed that PAA administration significantly alleviated renal lesions and collagen deposition in UUO mice. Mice with UUO resulted in epithelial-to-mesenchymal transition (EMT) and the activation of endoplasmic reticulum stress (ERS) in the renal tissues, while PAA treatment significantly inhibited EMT and ERS activation. Additionally, PAA markedly alleviated ERS-mediated apoptosis in UUO mice. Molecular docking results indicated that PAA stably combined to GRP78 and ATF4. In conclusion, these results demonstrated that PAA possesses a significant bioactivity against renal fibrosis and its treatment mechanism might be the inhibition of ERS-mediated apoptosis.