Alzheimer's disease (AD), a demonstrativeness disease with insidious onset, has become an important public health problem worldwide and is the fifth leading cause of death in the world. Boschniakia rossica (BR) has been used to treat age-related diseases, especially AD in China for centuries, but the material basis and mechanism are unclear. Here, we investigated the effective components and the mechanism of BR in the treatment of AD. The therapeutic effect of BR was verified through pathological and behavioral studies of AD rat model. BR can significantly increase the number of nerve cells in the hippocampus and improve the study and memory ability of AD rats. Subsequently, the active composition and the potential targets of BR were explored by UPLC-Q-Orbitrap-HRMS and network pharmacology. Ursolic acid, baicalein, and salicylic acid were the potential pharmacodynamic components acted on the phosphatidylinositol 3-kinase (PI3 K)/protein kinase B (AKT) pathway, which was verified by further molecular docking and molecular dynamics simulations. The in vivo and in vitro study revealed that BR treat AD by reducing the neurotoxicity of Aβ25-35 induced nerve cells by regulating PI3K/AKT signaling pathway. Our data strongly support a theoretical basis and methodology for the treatment of AD by BR and a reference for its new drug development.
Keywords: Alzheimer's disease; Bioinformatic analysis; Boschniakia rossica; Effective components; PI3K/AKT pathway.
Copyright © 2024 Elsevier B.V. All rights reserved.