Substantial effort has been made in manually tracking plant maturity and to measure early-stage plant density and crop height in experimental fields. In this study, RGB drone imagery and deep learning (DL) approaches are explored to measure relative maturity (RM), stand count (SC), and plant height (PH), potentially offering higher throughput, accuracy, and cost-effectiveness than traditional methods. A time series of drone images was utilized to estimate dry bean RM employing a hybrid convolutional neural network (CNN) and long short-term memory (LSTM) model. For early-stage SC assessment, Faster RCNN object detection algorithm was evaluated. Flight frequencies, image resolution, and data augmentation techniques were investigated to enhance DL model performance. PH was obtained using a quantile method from digital surface model (DSM) and point cloud (PC) data sources. The CNN-LSTM model showed high accuracy in RM prediction across various conditions, outperforming traditional image preprocessing approaches. The inclusion of growing degree days (GDD) data improved the model's performance under specific environmental stresses. The Faster R-CNN model effectively identified early-stage bean plants, demonstrating superior accuracy over traditional methods and consistency across different flight altitudes. For PH estimation, moderate correlations with ground-truth data were observed across both datasets analyzed. The choice between PC and DSM source data may depend on specific environmental and flight conditions. Overall, the CNN-LSTM and Faster R-CNN models proved more effective than conventional techniques in quantifying RM and SC. The subtraction method proposed for estimating PH without accurate ground elevation data yielded results comparable to the difference-based method. Additionally, the pipeline and open-source software developed hold potential to significantly benefit the phenotyping community.
Copyright © 2024 Leonardo Volpato et al.