Excessive exposure to ultraviolet radiation B (UVB) has been shown to contribute to the aging of human skin cells. Previous research has demonstrated that atorvastatin calcium (Ato) can mitigate the aging effects caused by chemotherapy drugs. However, it remains unclear whether Ato can alleviate skin aging induced by ultraviolet radiation. In this study, through in vitro experiments with Hacat cells, we found that Ato can significantly reduce the UVB-induced increased expression of age-related protein p16 and age-related gene p21, and also reduce the up-regulation of inflammatory factors such as IL-1 and IL-6. Besides, it can reduce the expression of metallomatrix protein (MMP1 and MMP9), and inhibit cell senescence and inflammatory damage. Similarly, we found that Ato can enhance skin collagen fiber reduction and collagen volume decrease, repair skin photoaging and damage induced by UVB rays, and speed up the rate at which the wounded location heals in vivo using Balb/c mice. In the mechanism, Ato markedly decreased the expression of p-p38, p-p65, p-mTOR in vivo and in vitro, suggesting that it may act on Mitogen-activated protein kinase (MAPK), Nuclear factor κB (NF- κB) and Mammalian target of rapamycin (mTOR) signaling pathways to produce above marked effects. In conclusion, Ato obviously relieved UVB-induced photoaging and damage, thus providing evidence for its potential in mitigating skin aging caused by ultraviolet radiation.
Keywords: Atorvastatin calcium; Cellular senescence; Skin photoaging; UVB.
© 2024. The Author(s).