Introduction: Invasive fungal diseases (IFDs) are a serious threat to immunocompromised patients. Routine diagnostic methods have limited performance in identifying IFDs. Next-generation sequencing (NGS), including metagenomic NGS (mNGS) and whole-genome sequencing (WGS), recently emerged as diagnostic methods that could provide more accurate and timely diagnoses and management of IFDs.
Areas covered: This article describes the emergence of NGS as a diagnostic tool to address the limitations of current tests. The literature regarding its application and clinical utility in the diagnosis of IFDs is reviewed. Practical considerations, challenges, and opportunities as they relate to the development and implementation of mNGS and WGS for fungal pathogens are discussed.
Expert opinion: NGS emerged over a decade ago with the potential to solve many of the challenges in diagnosing infectious diseases, including IFDs. However, published literature has yielded conflicting data about its clinical utility. The increased clinical adoption of NGS is improving our understanding of how to interpret and use its results to guide actionable decisions. Still, several gaps remain. As the cost, effort, and expertise involved in performing NGS decrease and the reporting of its results becomes standardized, NGS is poised to fill current gaps in the diagnosis of IFDs.
Keywords: Fungal infections; cancer; immunocompromised patients; invasive fungal disease; metagenomic; molecular diagnostics; next-generation sequencing; transplant patients.