In this article, we present several organic synthetic way to synthesize a family of five polyaromatic molecules based on a cyclophane core. Our strategies revolves around palado-catalyzed substitution on a [2.2]paracyclophane (pCp) building block. Direct formation of a cyclophane was also employed for two molecules. The polyaromatic nature of the cyclophane library we synthetized made them good fluorophores candidate, we hence performed full photophysical characterization (Absorption, Emission, TCSPC) in different solvent as well as embed in polystyrene films. We evaluate how the cyclophane moiety influence their photo physical properties compared to their corresponding homologues without pCp core, demonstrating greater stoke shift and intramolecular exciplex behavior. The general behavior among cyclophanes was also compared and show solvent dependent properties as well as consistency of the photophysics between toluene and polystyrene matrix.
Keywords: Photophysics; [2,2] paracyclophane synthesis; chemical design of fluorescent molecules; polyaromatic cyclophane.
© 2024 The Authors. ChemistryOpen published by Wiley-VCH GmbH.