Herein, we report a label-free cancer biosensor designed for carcinoembryonic antigen (CEA) detection using a nanohybrid comprising CeO2 nanoparticles, carbon nanoparticles (CNPs), and chitosan (Ch). CeO2 nanoparticles were prepared using a simple green synthesis process. A thin film of the CeO2-CNPs-Ch nanohybrid was formed on indium tin oxide (ITO)-coated glass plates that endowed a high surface area, excellent stability, and good adsorption for the efficient loading of CEA antibodies. Quantitative and selective determination of CEA antigen was achieved by immobilizing monoclonal CEA antibodies (anti-CEA) on the CeO2-CNPs-Ch/ITO platform. The electrochemical response of the anti-CEA/CeO2-CNPs-Ch/ITO immunoelectrode was evaluated in a label-free immunoassay format using differential pulse voltammetry (DPV). The response studies of immunoelectrodes indicated wider linearity with respect to the CEA concentration in the range of 0.05-100 ng mL-1. The electrochemical cancer biosensor exhibited a higher sensitivity of 22.40 μA cm-2 per decade change in concentration along with storage stability for up to 35 days. The limit of detection (LOD) was 0.037 ng mL-1. Furthermore, this cancer biosensor exhibited good specificity and reproducibility. Thus, the proposed CeO2-CNPs-Ch nanocomposite-based platform provides an efficient method for the analysis of other antigen-antibody interactions and biomolecule detection. The efficacy of the anti-CEA/CeO2-CNPs-Ch/ITO immunoelectrode was further examined by measuring CEA levels in human serum.