We propose and demonstrate the simulation and fabrication of an all-fiber orbital angular momentum (OAM) mode converter capable of generating first- to fourth-order modes simultaneously, which is realized by inscribing a cascaded preset-twist long-period fiber grating (CPT-LPFG) in a six-mode fiber utilizing a CO2 laser. A new segmented Runge-Kutta method is proposed to simulate the preset-twist long-period fiber gratings. By calculating the twist angle and relative coupling coefficient for each pitch and then solving the coupled mode equations utilizing the Runge-Kutta algorithm. The simulation illustrates that the preset-twist method significantly improves the coupling coefficient of higher-order modes, thereby reducing coupling difficulty. In the experiment, by twisting the fiber at an angle of 1080° and fabricating cascaded gratings with periods of 745 μm, 310 μm, 204 μm, and 146 μm, it is feasible to generate first- to fourth-order OAM modes simultaneously, at wavelengths of 1635 nm, 1548 nm, 1460 nm, and 1334 nm, respectively. The insertion loss is less than 1 dB, and the mode purity is over 90 %. To the best of our knowledge, this is the first time that first- to fourth-order OAM modes are simultaneously generated utilizing a single long-period fiber grating.
Keywords: long-period fiber grating; mode converter; orbital angular momentum mode.
© 2024 the author(s), published by De Gruyter, Berlin/Boston.