Lithium niobate on insulator (LNOI) combines a variety of optoelectronic properties and can meet practical performance requirements that are uncommon in optoelectronic materials. This review introduces the fundamentals and the photonic device concepts that arise from the LNOI materials platform. Firstly, the nonlinear optical response of LNOI is presented, including birefringent phase matching (BPM), modal phase matching (MPM), and quasi-phase matching (QPM). The tunable properties are also introduced, including electro-optical (EO), thermo-optical (TO), and acousto-optical (AO) effects. The structures of nonlinear optical devices, such as ridge waveguides (including periodically polarized inversion waveguides), Mach-Zehnder interferometer (MZI) modulators and micro-resonators (such as disks and rings) are demonstrated. Finally, the future of LNOI devices is discussed. In the already mature and developed optoelectronic material systems, it is rare to find one particular material system supporting so many basic optical components, photonic devices and optoelectronic devices as LNOI does in the field of integrated photonic chips.
Keywords: lithium niobate on insulator; nonlinear-optical effect; photonics devices; structure colours; tunable properties.
© 2024 the author(s), published by De Gruyter, Berlin/Boston.