3-D depth sensing is essential for many applications ranging from consumer electronics to robotics. Passive depth sensing techniques based on a double-helix (DH) point-spread-function (PSF) feature high depth estimation precision, minimal power consumption, and reduced system complexity compared to active sensing methods. Here, we propose and experimentally implemented a polarization-multiplexed DH metalens designed using an autonomous direct search algorithm, which utilizes two contra-rotating DH PSFs encoded in orthogonal polarization states to enable monocular depth perception. Using a reconstruction algorithm that we developed, concurrent depth calculation and scene reconstruction with minimum distortion and high resolution in all three dimensions were demonstrated.
Keywords: depth sensing; double-helix; metalens; metasurface.
© 2023 the author(s), published by De Gruyter, Berlin/Boston.