Can a Hybrid Line Break a Selection Limit on Behavioral Evolution in Mice?

Behav Genet. 2024 Dec 5. doi: 10.1007/s10519-024-10209-7. Online ahead of print.

Abstract

Artificial selection yielded four replicate high runner (HR) lines of mice that reached apparent selection limits (~ threefold increase in wheel revolutions per day vs. four control lines), despite maintenance of additive genetic variance. After 68 generations, we used animal models to test for changes in additive-genetic variances and covariance of the two measured components (average speed and duration) of running distance. We also attempted to break the selection limit by crossing two HR lines, then continuing directional selection on this hybrid line and on the two parental lines for nine generations. The genetic correlation between speed and duration was positive in the base population, but evolved to be negative in the two parental HR lines. Although heritability for both speed and duration (but not distance) increased in the hybrid line, their genetic correlation remained negative. Hybrid F1 mice from generation 68 parents showed heterosis for running distance, which was lost in subsequent generations, and the hybrid line did not exceed the limit. Both male and female hybrids ran faster than parental lines for most generations, but running duration was intermediate or reduced, reflecting their negative genetic correlation. The evolved genetic trade-off between speed and duration may explain the inability for the hybrid line to break the selection limit for distance run, despite renewed additive genetic variance for at least one of its component traits.

Keywords: Artificial selection; Genetic architecture; Heterosis; Hybrid; Voluntary exercise; Wheel running.