Video exposure is known to affect brain function, yet its impact on neurodevelopmental processes remains unclear. This study aimed to investigate whether exposure to a video depicting social behavior induces behavioral and neurological changes in socially isolated mice. On Postnatal Day (PND) 21, male mice were separated from their dams and randomly assigned to three groups: socially grouped mice; socially isolated mice (ISO), where mice were housed without any social stimulation; and social video-exposed mice (SVE), where mice were exposed to a social video played on a tablet from PND21 to PND56 under socially isolated conditions. On PND56, all animals underwent behavioral tests. Compared to the socially grouped mice and ISO group, the SVE group showed an attenuated response to amphetamine treatment. In the social cognition test, the ISO group exhibited decreased affiliative behavior and increased offensive and defensive behavior. However, the SVE group showed a partial improvement in social cognition, including increased affiliative behaviors and decreased defensive behaviors, although no changes in offensive behaviors were observed. Furthermore, the SVE group exhibited elevated levels of tyrosine hydroxylase and dopamine transporter in key social cognition regions-namely the prefrontal cortex, retrosplenial cortex, and hippocampus. This neurochemical shift implies that socially isolated mice can acquire social behaviors through exposure to video-based social interactions. These effects may be related to the compensatory response of the dopamine system, which is implicated in various psychiatric disorders. (PsycInfo Database Record (c) 2024 APA, all rights reserved).