Cavity-enhanced superconductivity in MgB2 from first-principles quantum electrodynamics (QEDFT)

Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2415061121. doi: 10.1073/pnas.2415061121. Epub 2024 Dec 5.

Abstract

Strong laser pulses can control superconductivity, inducing nonequilibrium transient pairing by leveraging strong-light matter interaction. Here, we demonstrate theoretically that equilibrium ground-state phonon-mediated superconductive pairing can be affected through the vacuum fluctuating electromagnetic field in a cavity. Using the recently developed ab initio quantum electrodynamical density-functional theory approximation, we specifically investigate the phonon-mediated superconductive behavior of MgB[Formula: see text] under different cavity setups and find that in the strong light-matter coupling regime its superconducting transition temperature T[Formula: see text] can be enhanced at most by [Formula: see text]10% in an in-plane (or out-of-plane) polarized and realistic cavity via photon vacuum fluctuations. The results highlight that strong light-matter coupling in extended systems can profoundly alter material properties in a nonperturbative way by modifying their electronic structure and phononic dispersion at the same time. Our findings indicate a pathway to the experimental realization of light-controlled superconductivity in solid-state materials at equilibrium via cavity materials engineering.

Keywords: cavity quantum electrodynamics; condensed matter physics; electronic structure; quantum electrodynamical density functional theory; superconductivity.