In humans and nonhuman primates, the central 1° of vision is processed by the foveola, a retinal structure that comprises a high density of photoreceptors and is crucial for primate-specific high-acuity vision, color vision and gaze-directed visual attention. Here, we developed high-spatial-resolution ultrahigh-field 7T functional magnetic resonance imaging methods for functional mapping of the foveolar visual cortex in awake monkeys. In the ventral pathway (visual areas V1-V4 and the posterior inferior temporal cortex), viewing of a small foveolar spot elicits a ring of multiple (eight) foveolar representations per hemisphere. This ring surrounds an area called the 'foveolar core', which is populated by millimeter-scale functional domains sensitive to fine stimuli and high spatial frequencies, consistent with foveolar visual acuity, color and achromatic information and motion. Thus, this elaborate rerepresentation of central vision coupled with a previously unknown foveolar core area signifies a cortical specialization for primate foveation behaviors.
© 2024. The Author(s).