Early detection of cancer significantly improves patient outcomes, with biomarkers offering a promising avenue for earlier and more precise diagnoses. Microfluidic biosensors have emerged as a powerful tool for detecting these biomarkers in body fluids, providing enhanced sensitivity, specificity, and rapid analysis. This review focuses on recent advances in microfluidic biosensors from 2018 to 2024, detailing their operational principles, fabrication techniques, and integration with nanotechnology for cancer biomarker detection. Additionally, we have reviewed recent innovations in several aspects of microfluidic biosensors, such as novel detection technologies, nanomaterials and novel microfluidic chip structures, which significantly enhance detection capabilities. We highlight key biomarkers pertinent to early cancer detection and explore how these innovations in biosensor technology contribute to the evolving landscape of personalized medicine. We further explore how these technologies could be incorporated into clinical cancer diagnostic workflows to improve early detection and treatment outcomes. These innovations could help enable more precise and personalized cancer diagnostics. In addition, this review addresses several important issues such as enhancing the scalability and sensitivity of these biosensors in clinical settings and points out future possibilities of combining artificial intelligence diagnostics with microfluidic biosensors to optimize their practical applications. This overview aims to guide future research and clinical applications by addressing current challenges and identifying opportunities for further development in the field of biomarker research.
Keywords: Biomarkers; Early cancer detection; Hematology; Microfluidics; Oncology; Personalized nanomedicine.
© 2024. The Author(s).