Extracellular vesicles for delivering therapeutic agents in ischemia/reperfusion injury

Asian J Pharm Sci. 2024 Dec;19(6):100965. doi: 10.1016/j.ajps.2024.100965. Epub 2024 Sep 4.

Abstract

Ischemia/reperfusion (I/R) injury is marked by the restriction and subsequent restoration of blood supply to an organ. This process can exacerbate the initial tissue damage, leading to further disorders, disability, and even death. Extracellular vesicles (EVs) are crucial in cell communication by releasing cargo that regulates the physiological state of recipient cells. The development of EVs presents a novel avenue for delivering therapeutic agents in I/R therapy. The therapeutic potential of EVs derived from stem cells, endothelial cells, and plasma in I/R injury has been actively investigated. Therefore, this review aims to provide an overview of the pathological process of I/R injury and the biophysical properties of EVs. We noted that EVs serve as nontoxic, flexible, and multifunctional carriers for delivering therapeutic agents capable of intervening in I/R injury progression. The therapeutic efficacy of EVs can be enhanced through various engineering strategies. Improving the tropism of EVs via surface modification and modulating their contents via preconditioning are widely investigated in preclinical studies. Finally, we summarize the challenges in the production and delivery of EV-based therapy in I/R injury and discuss how it can advance. This review will encourage further exploration in developing efficient EV-based delivery systems for I/R treatment.

Keywords: Drug delivery; Extracellular vesicle engineering; Extracellular vesicles; Ischemia/reperfusion injury; Nanocarrier.