Noncentrosymmetric two-dimensional superconductors with large spin-orbit coupling offer an opportunity to explore superconducting behaviors far beyond the Pauli limit. One such superconductor, few-layer T_{d}-MoTe_{2}, has large upper critical fields that can exceed the Pauli limit by up to 600%. However, the mechanisms governing this enhancement are still under debate, with theory pointing toward either spin-orbit parity coupling or tilted Ising spin-orbit coupling. Moreover, ferroelectricity concomitant with superconductivity has been recently observed in the bilayer, where strong changes to superconductivity can be observed throughout the ferroelectric transition pathway. Here, we report the superconducting behavior of bilayer T_{d}-MoTe_{2} under an in-plane magnetic field, while systematically varying magnetic field angle and out-of-plane electric field strength. We find that superconductivity in bilayer MoTe_{2} exhibits a twofold symmetry with an upper critical field maxima occurring along the b axis and minima along the a axis. The twofold rotational symmetry remains robust throughout the entire superconducting region and ferroelectric hysteresis loop. Our experimental observations of the spin-orbit coupling strength (up to 16.4 meV) agree with the spin texture and spin splitting from first-principles calculations, indicating that tilted Ising spin-orbit coupling is the dominant underlying mechanism.