Caffeic acid differentially modulates behavior and neurochemicals in chronic unpredictable mild stress and dexamethasone induced models of depression

Pharmacol Biochem Behav. 2024 Dec 5:247:173930. doi: 10.1016/j.pbb.2024.173930. Online ahead of print.

Abstract

In the present study authors studied the effect of caffeic acid (CA) in chronic unpredictable mild stress (CUMS) and dexamethasone (DEXA) model of depression. CUMS (21 days) and DEXA (1.5 mg/kg × 21 days) was used for the induction of depression and anxiety related behavior. Locomotor activity was determined using actophotometer. Depression related behavior was determined using tail suspension test (TST) and forced swim test (FST) whereas for the determination of anxiety related behavior elevated plus maze (EPM) test was used. Following behavioral studies, mice were sacrificed by decapitation method. Hippocampus was dissected and was used for the neurochemical assays including 5-HT (serotonin), glutamate, nitrite and gamma-aminobutyric acid (GABA). The results obtained suggested that the CA (25-100 mg/kg, i.p.) did not affect the activity count in CUMS exposed and DEXA treated mice. CA (50 mg/kg) evoked anxiogenic reactions in CUMS model by increasing the hippocampal nitrite and glutamate level while CA (50 mg/kg) exerted anxiolysis in DEXA model by reducing the level of 5-HT. In CUMS model, CA exerted antidepressant like effect by increasing the hippocampal nitric oxide (NO) level, in DEXA model CA exerted antidepressant like effect by reducing the hippocampal glutamate level. CA failed to reverse DEXA mediated nNOS inhibition and therefore decreases hippocampal glutamate level to exert antidepressant like effect. Thus, CA modulate anxiety and depression related neurobehavioral alterations in both CUMS and DEXA models.

Keywords: Anxiety; Caffeic acid; Depression; Glutamate; Nitrite; Serotonin.