Soil functional genes in grasslands are crucial for processes like nitrogen fixation, nitrification, denitrification, methane production, and oxidation, integral to nitrogen and methane cycles. However, the impact of global changes on these genes is not well understood. We reviewed 84 studies to examine the effects of nitrogen addition (N), warming (W), increased precipitation (PPT +), decreased precipitation (PPT-), and elevated CO2 (eCO2) on these functional genes. For nitrogen cycling, global changes mainly boost genes involved in nitrification but reduce those in denitrification, with nirK being the most sensitive. Most nitrogen fixation-related genes did not show a significant response. Among single factors, N and PPT + have the most significant effects. The impact of global changes on nitrogen cycling genes is largely additive, and their interaction with N is particularly influential. For methane cycling, global changes notably affect mcrA, while only PPT + significantly reduces pmoA. The magnitude and duration of global change treatments are more critical than the treatment form for nitrogen cycling genes. For methane cycling, the form and intensity of nitrogen addition, along with treatment duration, affect pmoA abundance. We also identified a competitive relationship between methane oxidation and nitrification and a complex coupling with denitrification. This study provides new insights into microbial responses in nitrogen and methane cycling under global changes, with significant implications for experimental design and management strategies in grassland ecosystems.
Keywords: Functional genes; Global change factors; Grassland ecosystem; Methane cycle; Nitrogen cycle.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.