Tumor-associated macrophages (TAMs) play a crucial physiological role in the pancreatic tumor microenvironment. However, the role of long non-coding RNAs (lncRNAs) in TAMs within pancreatic tumors remains unclear. By lncRNA sequencing between TAMs and resident macrophages from normal tissues in pancreatic cancer, it is found that H19 is highly expressed in TAMs and is correlated with the prognosis and stages of pancreatic cancer. Constructing a co-culture model of THP-1 derived TAMs and pancreatic cancer cells, H19 promotes the polarization of TAMs towards the M2 phenotype and the secretion of IL-6, IL-10, and TGF-β, both in vivo and in vitro, indirectly enhancing pancreatic cancer proliferation and metastasis. Mechanistically, H19 competitively binds to the mRNA of YTHDC1 with MiR-107, and also interacts with the YTHDC1 protein, regulating the stability of SRSF1 and thereby affecting the alternative splicing of IL-6 and IL-10. Utilizing organoids and the patient-derived xenograft (PDX) model, it is found that ruxolitinib may represent a promising treatment option for PDAC patients with high H19 expression.
Keywords: Alternative splicing; H19; Pancreatic cancer; Ruxolitinib; Tumor-associated macrophages.
Copyright © 2024 Elsevier B.V. All rights reserved.