This study offers a novel method for improving the piezoelectric characteristics of polyvinylidene fluoride (PVDF) by adding lanthanated CoFe2O4 nanoparticles (CLFO), thereby addressing the critical need for effective renewable energy solutions. The novelty of this work lies in the synthesis of CLFO nanoparticles and their integration into the PVDF matrix, with polyvinylpyrrolidone (PVP) employed to ensure uniform dispersion. This was accomplished by a special co-precipitation and heat treatment procedure. Nanocomposite films were created using solvent casting with a range of CLFO concentrations (1, 3, 5, and 7 wt%). The structural, morphological, mechanical, and thermal properties of these films were all thoroughly assessed. A remarkable improvement over conventional techniques was found using X-ray diffraction and Fourier transform infrared spectroscopy, which showed up to 80% β-phase development with 3 wt% CLFO. While thermogravimetric studies showed enhanced thermal stability, scanning electron microscopy verified homogeneous nanoparticle dispersion. Mechanical tests revealed ideal stiffness, strength, and ductility at 3 wt% CLFO. Significant advances in electronics and energy harvesting are anticipated from this novel combination of PVDF's piezoelectric properties and CLFO reinforcement. By minimally influencing the environment, these advancements not only tackle the world's energy problems but also present prospective uses for renewable energy technologies.
This journal is © The Royal Society of Chemistry.