This research examines the cytotoxic consequences of thymoquinone-loaded bovine serum albumin nanoparticles (TQ-BSA NPs) on the A549 lung cancer cell line. UV-visible (UV-Vis) spectroscopy, Fourier transform infrared spectrophotometer (FT-IR), scanning electron microscopy (SEM), and dynamic light scattering (DLS) were employed to verify the biogenic TQ-BSA NPs' size, shape, and distribution. UV-Vis spectrophotometry indicated peaks at 200-300 nm, 500-600 nm, and a prominent peak at 700-800 nm, confirming the presence of TQ-BSA NPs. The polydispersity index, as confirmed by DLS, indicated a solvent distribution in water, accompanied by a zeta potential value of 126.2 ± 46.8 mV. The average size of TQ-BSA NPs was confirmed to be 187 ± 8 nm by SEM. TQ-BSA NPs reduce colony formation in the A549 lung cancer cell line in a dose-dependent manner relative to the control group. Protein expression analysis indicated that TQ-BSA NPs promoted programmed cell death by increasing pro-apoptotic levels and decreasing anti-apoptotic levels. TQ-BSA NPs demonstrated inhibition of cancer cell proliferation and promotion of apoptosis and exhibited significant efficacy against cancer cells at low concentrations. As a result, they have the makings of a promising chemotherapeutic agent for low-dose, long-term administration.
Keywords: A549 cells; anticancer activity; bovine serum albumin; cytotoxic; thymoquinone.
© 2024 the author(s), published by De Gruyter.