Biomedical prospects and challenges of metal dichalcogenides nanomaterials

Prog Biomed Eng (Bristol). 2024 Aug 13;6(3). doi: 10.1088/2516-1091/ad6abb.

Abstract

The biomedical applications of metal dichalcogenides (MDCs) nanomaterials (NMs) are an emerging discipline because of their unique attributes like high surface-to-volume ratio, defect sites, superb catalytic performance, and excitation-dependent emission, which is helpful in bio-imaging and cancer cell killing. Due to the compatibility of sensing material with cells and tissues, MoS2, WS2, and SnS2NMs have piqued the interest of researchers in various biomedical applications like photothermal therapy used in killing cancer cells, drug delivery, photoacoustic tomography (PAT) used in bio-imaging, nucleic acid or gene delivery, tissue engineering, wound healing, etc. Furthermore, these NMs' functionalization and defect engineering can enhance therapeutic efficacy, biocompatibility, high drug transport efficiency, adjustable drug release, dispersibility, and biodegradability. Among the aforementioned materials, MoS2NMs have extensively been explored via functionalization and defects engineering to improve biosensing properties. However, further enhancement is still available. Aside from MoS2, the distinct chemo-physical and optical features of WS2and SnS2NMs promise considerable potential in biosensing, nanomedicine, and pharmaceuticals. This article mainly focuses on the challenges and future aspects of two-dimensional MDCs NMs in biomedical applications, along with their advancements in various medical diagnosis processes.

Keywords: biocompatibility; cancer therapeutics; metal dichalcogenides; nanomaterials; tissue engineering; wound healing.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chalcogens / chemistry
  • Disulfides / chemistry
  • Drug Delivery Systems / methods
  • Humans
  • Molybdenum / chemistry
  • Nanomedicine / methods
  • Nanostructures* / chemistry
  • Nanostructures* / therapeutic use
  • Sulfides / chemistry

Substances

  • Chalcogens
  • Molybdenum
  • Disulfides
  • molybdenum disulfide
  • Sulfides