Introduction: The aims of this study were to determine (1) whether endothelial nitric oxide synthase (eNOS) inhibition stimulates endothelial microvesicles (EMVs) release and (2) the effect of EMVs derived from eNOS-inhibited cells on endothelial cell eNOS, inflammation, apoptosis, and tissue-type plasminogen activator (t-PA).
Methods: Human umbilical vein endothelial cells (HUVECs) were treated with the eNOS inhibitor (NG-nitro-<sc>l</sc>-arginine methyl ester [L-NAME], 300 µ<sc>M</sc>) for 24 h. EMVs from untreated and L-NAME-treated cells were isolated, quantified, and exposed to HUVECs for 24 h.
Results: eNOS-inhibited cells released significantly higher EMVs than untreated cells (81 ± 13 vs. 41 ± 15 EMV/μL; p = 0.005). Expression of total eNOS (97.1 ± 16.4 vs. 157.5 ± 31.2 arbitrary units [AUs]; p = 0.01), p-eNOS (4.9 ± 1.2 vs. 9.1 ± 12.6 AUs; p = 0.02), and NO production (5.0 ± 0.8 vs. 7.0 ± 1.3 µmol/L; p = 0.04) were significantly lower in cells treated with EMVs from L-NAME-treated cells. L-NAME-derived EMVs induced significantly higher IL-6 (38.3 ± 10.3 vs. 21.0 ± 3.8 pg/mL; p = 0.01) and IL-8 (38.9 ± 7.0 vs. 27.2 ± 6.2 pg/mL; p = 0.04) production concurrent with higher expression of p-NF-κB p65 (Ser536) (9.7 ± 1.6 vs. 6.1 ± 1.2 AUs; p = 0.01). Expression of activated caspase-3 was higher (9.5 ± 1.1 vs. 6.4 ± 0.4 AUs) and t-PA lower (24.2 ± 4.3 vs. 36.2 ± 8.4 AUs; p = 0.04) in cells treated with L-NAME-derived EMVs.
Conclusion: eNOS inhibition induces an increase in EMV release and an EMV phenotype with adverse cellular effects.
Keywords: Apoptosis; Endothelial cells; Endothelial microvesicles; Fibrinolysis; Inflammation; Nitric oxide.
© 2024 S. Karger AG, Basel.