Why severe injury to the central nervous system (CNS) triggers the development of large neurogenic heterotopic ossifications (NHOs) within periarticular muscles remains unknown. We report that spinal cord injury (SCI) triggers a rapid corticosterone spike in mice, which is causal for NHO development because treatments with corticosterone or the synthetic glucocorticoid (GC) receptor (GR) agonist dexamethasone are sufficient to trigger heterotopic ossification and upregulate the expression of osteoinductive and osteogenic differentiation genes in injured muscles even without SCI. The central role for GR signaling in causing NHO is further demonstrated in mice deleted for the GR gene (Nr3c1), which no longer develop NHO after SCI. Furthermore, administration of clinical GR antagonists inhibits NHO development in mice with SCI. This study identifies endogenous GC as causing pathological NHO after CNS injury and suggests that GR antagonists may be of prophylactic use to prevent NHO development in victims of severe CNS injuries.
Keywords: Glucocorticoid receptor; dexamethasone; fibroadipogenic progenitor; inflammation; mifepristone; muscle repair; neurogenic heterotopic ossification; osteoblast; relacorilant; spinal cord injury.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.