Background: Acquired resistance to temozolomide (TMZ) chemotherapy due to DNA mismatch repair (MMR) enzyme deficiency is a barrier to improving outcomes for IDH wild-type glioblastoma (GBM) patients. KL-50 is a new imidazotetrazine-based therapeutic designed to induce DNA interstrand cross links, and subsequent double-stranded breaks, in an MMR-independent manner in cells with O-6-Methylguanine-DNA Methyltransferase (MGMT) deficiency. Previous research showed its efficacy against LN229 glioma cells with MMR and MGMT knockdown. Its activity against patient-derived GBM that model post-TMZ recurrent tumors is unclear.
Methods: We created MMR-deficient GBM patient-derived xenografts through exposure to TMZ, followed by treatment with additional TMZ or KL-50. We also generated isogenic, MSH6 knockout patient-derived GBM and tested them for sensitivity to TMZ and KL-50.
Results: KL-50 extended the median survival of mice intracranially engrafted with either patient-derived TMZ-naïve GBM6 or TMZ-naïve GBM12 by 1.75-fold and 2.15-fold, respectively (p<0.0001). A low dose (4 Gy) of fractionated RT further extended the survival of KL-50 treated GBM12 mice (median survival=80 days for RT+ KL-50 vs. 71 days KL-50 alone, P=0.018). KL-50 also extended the median survival of mice engrafted with post-TMZ, MMR-deficient GBM6R-m185 (140 days for KL-50 vs. 37 days for vehicle, p<0.0001). MSH6-KO increased TMZ IC50 for GBM6 and GBM12 cultures by >5-fold and >12-fold for cell death and live cell count outputs, respectively. In contrast, MSH6-KO actually decreased KL-50 IC50 by 10-80%.
Conclusion: KL-50-based compounds are a promising new strategy for the treatment of MGMT-deficient, MMR-deficient GBM that recurs after frontline TMZ.
Keywords: Glioblastoma; KL-50; mismatch repair; recurrent; temozolomide.
© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].