The hidden Markov model is a popular modeling strategy for describing and explaining latent process dynamics. There is a lack of information on the estimation performance of the Bayesian hidden Markov model when applied to categorical, one-level data. We conducted a simulation study to assess the effect of the 1) number of observations (250-8.000), 2) number of levels in the categorical outcome variable (3-7), and 3) state distinctiveness and state separation in the emission distribution (low, medium, high) on the performance of the Bayesian hidden Markov model. Performance is quantified in terms of convergence, accuracy, precision, and coverage. Convergence is generally achieved throughout. Accuracy, precision, and coverage increase with a higher number of observations and an increased level of state distinctiveness, and to a lesser extent with an increased level of state separation. The number of categorical levels only marginally influences performance. A minimum of 1.000 observations is recommended to ensure adequate model performance.
Copyright: © 2024 Simons et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.