Graphene-based nanomaterials applications for agricultural and food sector

Adv Colloid Interface Sci. 2024 Dec 6:336:103377. doi: 10.1016/j.cis.2024.103377. Online ahead of print.

Abstract

In the past decade, graphene-based nanomaterials (GBNs) have been considerably investigated in agriculture due to their exceptionally enriched physicochemical properties. Productivity in the agricultural sector relies significantly on agrochemicals. However, conventional systems suffer from a lack of application efficiency, resulting in environmental pollution and associated problems. Due to high surface area, easy functionalization, high chemical stability, biocompatibility, and ability to adhere to biological structures, GBNs become a promising candidate for agro-delivery carriers. A comprehensive review on developments of GBNs for pesticide delivery, nutrient delivery, food packaging and preservation, and their impacts on plant growth and development are missing in the literature. To address this, here we presented a detailed review on the material design, agrochemicals loading, release or diffusion kinetics, in-vivo applications, and effects of GBNs on plants. The GBNs found to improve the efficacy of existing agrochemicals and food preservatives, aiming to decrease the overall burden of these substances. The incorporation of GBNs in biocompatible and biodegradable polymers is reported to improve their oxygen barrier and mechanical properties for food packaging applications, targeting to reduce the use of petroleum-derived polymers based current food packaging materials, which leads to serious environmental impacts. In the context of plant nanobionics, GBNs has been found to boost the plant growth at low concentrations. Here, recommendations for future research have been deliberated, drawing reference from the relevant area to gain a deeper understanding of the underlying science, and to develop better delivery and packaging applications approaches. Additionally, discussions on recommendations regarding the safe concentration of GBNs for plant nanobionics are presented to facilitate their secure and effective utilization.

Keywords: Fertilizer; Food packaging; Graphene; Graphene oxide; Graphene-plant interaction; Nano-enabled agriculture; Pesticides.

Publication types

  • Review