Background: Glioblastoma is the most aggressive adult primary brain cancer, characterized by significant heterogeneity, posing challenges for patient management, treatment planning, and clinical trial stratification.
Methods: We developed a highly reproducible, personalized prognostication and clinical subgrouping system using machine learning (ML) on routine clinical data, MRI, and molecular measures from 2,838 demographically diverse patients across 22 institutions and 3 continents. Patients were stratified into favorable, intermediate, and poor prognostic subgroups (I, II, III) using Kaplan-Meier analysis (Cox proportional model and hazard ratios [HR]).
Results: The ML model stratified patients into distinct prognostic subgroups with HRs between subgroups I-II and I-III of 1.62 (95%CI: 1.43-1.84, p<0.001) and 3.48 (95%CI: 2.94-4.11, p<0.001), respectively. Analysis of imaging features revealed several tumor properties contributing unique prognostic value, supporting the feasibility of a generalizable prognostic classification system in a diverse cohort.
Conclusions: Our ML model demonstrates extensive reproducibility and online accessibility, utilizing routine imaging data rather than complex imaging protocols. This platform offers a unique approach for personalized patient management and clinical trial stratification in glioblastoma.
Keywords: Glioblastoma; Machine Learning; Prognostic Subgrouping; Survival; mpMRI.
© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].