Background: It is well known that myelin disruption and neuroinflammation are early and distinct pathological hallmarks in multiple system atrophy (MSA) as well as in idiopathic Parkinson's disease and in other atypical Parkinsonian syndromes. The objective of this study was to assess the value of non-neuronal biomarker candidates that reflect myelin disruption and neuroinflammation.
Methods: Myelin basic protein (MBP) and the soluble form of TREM2 were quantified in a comprehensive movement disorder cohort from two different neurological centers, comprising a total of 171 CSF samples. Commercially available ELISA systems were employed for quantification.
Results: The results of the MBP analysis revealed a significant increase in cerebrospinal fluid (CSF) MBP levels in all atypical Parkinsonian conditions compared to PD. This differentiation was more pronounced in the MSA-c subtype compared to MSA-p. Receiver operating characteristic (ROC) analysis revealed a significant discrimination between PD and MSA (p = 0.032, AUC = 0.70), PD and DLB (p = 0.006, AUC = 0.79) and PD and tauopathies (p = 0.006, AUC = 0.74). The results of the TREM2 analysis demonstrated no significant differences between the PD and atypical Parkinsonian groups if not adjusted for confounders. After adjusting for age, sex, and disease duration, the PD group exhibited significantly higher TREM2 levels compared to the DLB group (p = 0.002).
Conclusions: In conclusion, MBP, but not TREM2, is elevated in the CSF of not only MSA but in all atypical Parkinsonian conditions compared to idiopathic Parkinson's disease. This highlights the value of the evaluation of myelin/oligodendrocyte-associated markers in neurodegenerative movement disorders.
Keywords: Biomarker; Cerebrospinal fluid; Multiple system atrophy; Myelin basic protein; TREM2.
© 2024. The Author(s).