Charcot-Marie-Tooth type 1A (CMT1A) is the most common inherited peripheral dysmyelinating neuropathy. Although lower limb muscle weakness is the most important factor affecting the quality of life of patients with CMT1A, existing clinical measures for its evaluation have limitations, including low sensitivity in detecting disease progression. Electrical impedance myography (EIM) is a newer tool that enables noninvasive evaluation of muscle state by measuring muscle composition, and potentially supports the evaluation of neuromuscular disease progression and treatment effects. To determine the potential of EIM as a CMT1A biomarker, we obtained natural history data for EIM from the gastrocnemius muscle of the PMP22-C3 mice, an animal model of CMT1A. Alterations in the EIM parameters, weak hindlimb grip strength, decreased muscle fiber size, and changes in the mRNA expression of genes related to neuromuscular junction dysfunction were found. These changes were more pronounced at later stages (12 and 18 weeks of age) than at earlier stage (6 weeks of age), indicating that EIM can detect disease progression in PMP22-C3 mice. Our preclinical findings support the use of EIM as a potential translational biomarker for assessing progressive changes in the pathological muscle state in CMT1A.
Keywords: Charcot-Marie-Tooth type 1A; Disease progression; Electric impedance myography; Muscle fiber atrophy; Neuromuscular junction dysfunction; PMP22-C3 mice.
Copyright © 2024. Published by Elsevier Inc.