The maternal microbiome influences child health. However, its impact on a given offspring's stem cells, which regulate development, remains poorly understood. To investigate the role of the maternal microbiome in conditioning the offspring's stem cells, we manipulated maternal microbiota using Akkermansia muciniphila. Different maternal microbiomes had distinct effects on proliferation and differentiation of neuronal and intestinal stem cells in the offspring, influencing their developmental trajectory, physiology, and long-term health. Transplantation of altered maternal microbiota into germ-free mice transmitted these stem cell phenotypes to the recipients' offspring. The progeny of germ-free mice selectively colonized with Akkermansia did not display these stem cell traits, emphasizing the importance of microbiome diversity. Metabolically more active maternal microbiomes enriched the levels of circulating short-chain fatty acids (SCFAs) and amino acids, leaving distinct transcriptomic imprints on the mTOR pathway of offsprings' stem cells. Blocking mTOR signaling during pregnancy eliminated the maternal-microbiome-mediated effects on stem cells. These results suggest a fundamental role of the maternal microbiome in programming offsprings' stem cells and represent a promising target for interventions.
Keywords: child health; development; differentiation; fecal microbiota transplant; mTOR signaling; maternal metabolites; maternal microbiota; neurogenesis; short chain fatty acids; stem cells.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.