The oxalamide skeleton is a common structural motif in many biologically active molecules. These scaffolds can be synthesized via ruthenium pincer complex-catalyzed acceptorless dehydrogenative coupling of ethylene glycol and amines. In this study, we elucidate the mechanism of this oxalamide synthesis using density functional theory calculations. The rate-determining state is identified as the formation of molecular hydrogen following the oxidation of hydroxyacetamide to oxoacetamide. In predictive catalysis exercises, various modifications to the ruthenium pincer catalyst were investigated to assess their impact on the reactivity.