In this study, we evaluated the effects of intrabursal administration of cabergoline and N-acetylcysteine on ovarian hyperstimulation syndrome (OHSS) in an immature rat model. The study assessed body, ovarian, and uterine weights, as well as the concentrations of vascular endothelial growth factor A (VEGF-A). Moreover, levels of MDA, 4-HDA, and nitrites were assessed in ovarian homogenates, and vascular permeability was quantified in the peritoneal cavity. Ovarian morphology was characterized using histology and hematoxylin-eosin staining, determining the count of ovarian follicles and corpus luteum. Our results demonstrated a significant increase in lipoperoxidation, nitrite levels, and VEGF-A concentrations in the OHSS group compared to the control group. These biochemical alterations corroborate the successful induction of OHSS in the experimental model. Direct injection into the ovarian bursa resulted in reduced vascular permeability and VEGF-A levels, suggesting that the effects of cabergoline are predominantly ovarian. Particularly, cabergoline did not significantly alter other parameters such as ovarian weight, lipoperoxidation, nitrite levels, or morphology. Conversely, low concentrations of N-acetylcysteine (25-50 µg/kg) significantly reduced ovarian and uterine weights, VEGF-A levels, and vascular permeability. Interestingly, this dose-response relationship was not observed at higher NAC concentrations (100-200 μg/kg), suggesting a potential threshold beyond which NAC loses efficacy in these specific parameters. Our results suggest that the localized administration of N-acetylcysteine shows promise as a therapeutic strategy for OHSS by modulating key parameters associated with the syndrome. These promising results warrant further investigation into its mechanisms and efficacy, potentially expanding therapeutic options for OHSS management.
Keywords: N-acetylcysteine; VEGF; antioxidant; cabergoline; dopamine agonist; intrabursal injection; ovarian hyperstimulation; oxidative stress.
Copyright © 2024 Dulce Elena Letras-Luna et al.