Automated Evaluation of Antibiotic Prescribing Guideline Concordance in Pediatric Sinusitis Clinical Notes

Pac Symp Biocomput. 2025:30:138-153.

Abstract

Background: Ensuring antibiotics are prescribed only when necessary is crucial for maintaining their effectiveness and is a key focus of public health initiatives worldwide. In cases of sinusitis, among the most common reasons for antibiotic prescriptions in children, healthcare providers must distinguish between bacterial and viral causes based on clinical signs and symptoms. However, due to the overlap between symptoms of acute sinusitis and viral upper respiratory infections, antibiotics are often over-prescribed.

Objectives: Currently, there are no electronic health record (EHR)-based methods, such as lab tests or ICD-10 codes, to retroactively assess the appropriateness of prescriptions for sinusitis, making manual chart reviews the only available method for evaluation, which is time-intensive and not feasible at a large scale. In this study, we propose using natural language processing to automate this assessment.

Methods: We developed, trained, and evaluated generative models to classify the appropriateness of antibiotic prescriptions in 300 clinical notes from pediatric patients with sinusitis seen at a primary care practice in the Children's Hospital of Philadelphia network. We utilized standard prompt engineering techniques, including few-shot learning and chain-of-thought prompting, to refine an initial prompt. Additionally, we employed Parameter-Efficient Fine-Tuning to train a medium-sized generative model Llama 3 70B-instruct.

Results: While parameter-efficient fine-tuning did not enhance performance, the combination of few-shot learning and chain-of-thought prompting proved beneficial. Our best results were achieved using the largest generative model publicly available to date, the Llama 3.1 405B-instruct. On our evaluation set, the model correctly identified 94.7% of the 152 notes where antibiotic prescription was appropriate and 66.2% of the 83 notes where it was not appropriate. However, 15 notes that were insufficiently, vaguely, or ambiguously documented by physicians posed a challenge to our model, as none were accurately classified.

Conclusion: Our generative model demonstrated good performance in the challenging task of chart review. This level of performance may be sufficient for deploying the model within the EHR, where it can assist physicians in real-time to prescribe antibiotics in concordance with the guidelines, or for monitoring antibiotic stewardship on a large scale.

MeSH terms

  • Anti-Bacterial Agents* / therapeutic use
  • Child
  • Child, Preschool
  • Computational Biology*
  • Electronic Health Records* / statistics & numerical data
  • Guideline Adherence / statistics & numerical data
  • Humans
  • Natural Language Processing*
  • Practice Guidelines as Topic*
  • Practice Patterns, Physicians' / statistics & numerical data
  • Sinusitis* / drug therapy

Substances

  • Anti-Bacterial Agents