Programs to mass rear and release Ganaspis kimorum Buffington (Hymenoptera: Figitidae) are ongoing in many countries to manage its host Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). To optimize parasitoid production and synchronize field releases with pest outbreaks, we investigated a cold storage protocol by exposing different immature G. kimorum stages to 2 storage temperatures (10 or 15°C) for 2, 4, 6, or 8 wk. We further studied those temperature/exposure time combinations that allowed survival but prevented parasitoid emergence before the end of each cold exposure, or the cold storage suitability (CSS). The impact of cold storage on G. kimorum emergence time, total development time, and emergence rate was then evaluated for temperature/exposure time combinations with CSS > 60%. We also assessed fitness costs in terms of longevity and parasitism rates of emerging parasitoids. Results showed that only G. kimorum larvae and pupae were suitable for cold storage under this methodology. Cold exposure significantly delayed the emergence time and total development time of larvae and pupae, whereas the emergence rate was significantly reduced only for larvae at 10°C for 6 wk. The longevity of emerging male and female parasitoids was significantly reduced when stored cold as larvae, while no effects were reported for the parasitism rate by emerged females. These findings provide new insights into G. kimorum cold sensitivity and offer valuable options to better schedule mass rearing and wasp releases for biological control of D. suzukii.
Keywords: Figitidae; cold temperature tolerance; mass rearing; spotted wing drosophila.
© The Author(s) 2024. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].