Autophagy modulates tenogenic differentiation of cartilage-derived stem cells in response to mechanical tension via FGF signaling

Stem Cells Transl Med. 2024 Nov 29:szae085. doi: 10.1093/stcltm/szae085. Online ahead of print.

Abstract

Background: In our previous study, we demonstrated that cartilage-derived stem cells (CDSCs) possess multi-differentiation potential, enabling direct bone-to-tendon structure regeneration after transplantation in a rat model. Therefore, the objective of this study is to investigate whether CDSCs are a suitable candidate for achieving biological regeneration of tendon injuries.

Methods: Tenogenic differentiation was evaluated through cell morphology observation, PCR, and Western blot (WB) analysis. Autophagic flux, transmission electron microscopy, and WB analysis were employed to elucidate the role of autophagy during CDSC tenogenic differentiation. Cell survival and tenogenesis of transplanted CDSCs were assessed using fluorescence detection of gross and frozen section images. Heterotopic ossification and quality of tendon healing were evaluated by immunofluorescence, hematoxylin-eosin (H&E), and Safrinin O/Fast Green stains.

Results: We found autophagy is activated in CDSCs when treated with cyclic tensile stress, which facilitates the preservation of their chondrogenic potential while impeding tenogenic differentiation. Inhibiting autophagy with chloroquine promoted tenogenic differentiation of CDSCs in response to cyclic tensile stress through activation of the Fgf2/Fgfr2 signaling pathway. This mechanism was further validated by 2 mouse transplantation models, revealed that autophagy inhibition could enhance the tendon regeneration efficacy of transplanted CDSCs at the patellar tendon resection site.

Conclusion: Our findings provide insights into CDSC transplantation for achieving biological regeneration of tendon injuries, and demonstrate how modulation of autophagy in CDSCs can promote tenogenic differentiation in response to tensile stress both in vivo and in vitro.

Keywords: FGF signaling; autophagy; cartilage derived stem cells; heterotopic ossification; stem cell transplantation; tendon repair; tenogenic differentiation.