Emergomyces africanus is a thermally dimorphic pathogen causing severe morbidity and mortality in immunocompromized patients. Its transition to a pathogenic yeast-like phase in the human host is a notable virulence mechanism. Recent studies suggest polyamines as key players in dimorphic switching, yet their precise functions remain enigmatic. This work aimed to explore polyamine metabolism of two clinical strains of E. africanus (CBS 136260 and CBS 140360) in mycelial and yeast-like phases. In this first report of the polyamine profile of E. africanus, we reveal, using mass spectrometry, spermidine, and spermine as the major polyamines in both phases. The secretion of these amines was significantly higher in the pathogenic yeast-like phase than in the mycelial phase, warranting further investigation into the implications thereof on virulence. Additionally, we detected the activity of several polyamine biosynthesis enzymes, including arginine decarboxylase, agmatinase, arginase, and ornithine decarboxylase, with significant differences in enzyme expression between morphological phases and strains. Finally, we provide initial evidence for the requirement for spermine, spermidine, and putrescine during the thermally induced dimorphic switch of E. africanus, with strain-specific differences in the production of these amines. Overall, our study presents novel insight into polyamine metabolism and its role in dimorphism of E. africanus.
Keywords: Emergomyces africanus; dimorphism; ornithine decarboxylase; polyamine biosynthesis; spermine.
© The Author(s) 2024. Published by Oxford University Press on behalf of FEMS.