The olfactory system of insects plays a pivotal role in multiple, essential activities including feeding, mating, egg laying, and host localization. The capacity of odorant receptors to recognize odor molecules relies on odorant receptor co-receptors forming heterodimers. Here we report the successful engineering a homozygous mutant strain of diamondback moth (Plutella xylostella) in which the odorant receptor co-receptor PxOrco was silenced using CRISPR/Cas9. This insect is a globally important crop pest for which novel control methods are urgently required. Behavioral assays demonstrated that PxOrco knockout males exhibited abolished courtship behaviors, inability to mate, and loss of selective preference for P. xylostella's key sex pheromone components. Whilst female mating behavior and fecundity remained unaffected by PxOrco knockout, oviposition response to leaf alcohol, a key cue for normal oviposition behavior, was lost. Electroantennography revealed drastically reduced responses to sex pheromones and plant volatiles in PxOrco-deficient adults but food location by larvae was unaffected. Moreover, expression analysis of PxOrco-deficient pheromone receptors (PRs) indicated varied regulation patterns, with down-regulation observed in several PRs in both sexes. These findings underscore the critical role of PxOrco in regulating multiple olfactory aspects in P. xylostella, including feeding, mating, and host location. Our study identifies the potential of disrupting the Orco gene in this and other pest species to provide novel avenues for future pest control.
Keywords: Electroantennography; Mating disruption; Odorant receptor co-receptors (orco); Oviposition behavior; Pheromone.
Copyright © 2024 Elsevier Ltd. All rights reserved.