Aqueous zinc-ion batteries have gained significant interest, offering several distinct advantages over conventional lithium-ion batteries owing to their compelling low cost, enhanced battery safety, and excellent environmental friendliness. Nevertheless, the unfortunate growth of zinc dendrites during cycling leads to poor electrochemical performance of zinc batteries, primarily attributed to the diminished wet mechanical properties and limited electrolyte uptake of existing commercial separators. Herein, a bio-based separator was developed from sustainable resources using natural polymers derived from wood pulp to replace fossil-based polyolefin separators. The inherent hydrophilicity and swelling ability of cellulose fibers provide separators with superior electrolyte wettability and uptake. Notably, the structural reinforcement provided by lignin, especially after hot pressing, enhances the separator's wet mechanical integrity and performance during battery cycling. These improvements contribute to the separator's more stable electrochemical performance and improved ion transport properties. Separators composed of lignin-rich microfibrillated cellulose fibers showed superior dimensional stability under heat compared to Celgard, ensuring higher thermal safety and enhanced performance of aqueous zinc-ion batteries. Our results reveal the great potential of lignin-rich cellulose-based separators for future zinc-ion batteries.
Keywords: Lignin-rich cellulose; Microfibrillated cellulose; Separator; Wet mechanical properties; Zinc-ion batteries.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.