Atherosclerosis (ASC) is characterized by foam cell-mediated plaque formation, vascular endothelial inflammation, and lipidosis and is the rudimentary cause of cardiovascular diseases. This is the pre-eminent global factor of mortality. This etiological paradigm is significantly influenced by several proteins, where 23 pivotal proteins involved in ASC were meticulously gleaned on the basis of literature studies. The crux of the present study was aimed to probe the drugability of four active phytochemicals from Crataegus oxyacantha (COC): epicatechin, gallate, tyramine, and vitexin against the selected 23 proteins. The molecular docking analysis was judiciously administered via Glide, the binding free energy was calculated in detail utilizing the prime molecular mechanics-generalized Born surface area (MM-GBSA) module, and a deeper comprehensive investigation of protein-ligand dynamic associations was elucidated through Desmond. Drawing from the upper echelons of our docking results, the molecular dynamics simulation outcomes revealed that the macrophage migration inhibitory factor and prethrombin-1 showed persistent binding nature with gallate. The bioactive compound known as gallate sourced from COC shows the best molecular association with pivotal proteins involved in ASC and has a promising therapeutic potential for drug development endeavors.
© 2024 The Authors. Published by American Chemical Society.