Chimeric aggregative multicellularity in absence of kin discrimination

bioRxiv [Preprint]. 2024 Dec 4:2024.12.04.626738. doi: 10.1101/2024.12.04.626738.

Abstract

Aggregative multicellularity is a cooperative strategy employed by some microorganisms. Unlike clonal expansion within protected environments during multicellular eukaryotic development, an aggregation strategy introduces the potential for genetic conflicts and exploitation by cheaters, threatening the stability of the social system. Myxococcus xanthus, a soil-dwelling bacterium, employs aggregative multicellularity to form multicellular fruiting bodies that produce spores in response to starvation. Studies of natural fruiting bodies show that this process is restricted to close kin or clonemates. Here, we investigate the mechanisms underlying kin recognition during development in M. xanthus. By co-culturing two distantly related M. xanthus strains under vegetative and starvation conditions, we observed that the strains segregate in both contexts. During vegetative growth, one strain antagonized the other using the type VI secretion system (T6SS). T6SS-mediated antagonism was also observed during development, resulting in monoclonal fruiting bodies when WT strains were mixed. In contrast, mixtures of T6SS knockout strains formed chimeric fruiting bodies, that produced viable spores from both strains. These findings suggest that T6SS is the primary mechanism of kin discrimination in distantly related M. xanthus strains, and its use ensures the development of monoclonal fruiting bodies and social integrity.

Keywords: fruiting bodies; kin discrimination; myxobacteria; type VI secretion system.

Publication types

  • Preprint