Mitochondrial metabolism and epigenetic crosstalk drive the SASP

Res Sq [Preprint]. 2024 Dec 5:rs.3.rs-5278203. doi: 10.21203/rs.3.rs-5278203/v1.

Abstract

Senescent cells drive tissue dysfunction through the senescence-associated secretory phenotype (SASP). We uncovered a central role for mitochondria in the epigenetic regulation of the SASP, where mitochondrial-derived metabolites, specifically citrate and acetyl-CoA, fuel histone acetylation at SASP gene loci, promoting their expression. We identified the mitochondrial citrate carrier (SLC25A1) and ATP-citrate lyase (ACLY) as critical for this process. Inhibiting these pathways selectively suppresses SASP without affecting cell cycle arrest, highlighting their potential as therapeutic targets for age-related inflammation. Notably, SLC25A1 inhibition reduces systemic inflammation and extends healthspan in aged mice, establishing mitochondrial metabolism as pivotal to the epigenetic control of aging.

Publication types

  • Preprint