The safety of meat from a microbiological standpoint is of paramount concern to public health, given the potential for bacterial contaminants to grow and persist during processing and storage. To address this issue, a culture-independent approach targeting the V3-V4 region of the 16S rRNA gene was utilized to investigate the inherent bacterial communities present in 10 chicken meat samples obtained from retail markets. Amplicons were sequenced using the Illumina MiSeq platform, and unique amplicon sequence variants (ASVs) were identified using the DADA2 pipeline. Results indicated the presence of 5 phyla, 7 classes, 16 orders, 33 families, 59 genera, and 273 unique ASVs. The dominant families were Flavobacteriaceae, Moraxellaceae, Enterobacteriaceae, Wohlfahrtiimonadaceae, Morganellaceae, and Pseudomonadaceae, comprising 27.03, 22.04, 15.67, 9.40, 7.92, and 5.02% of the identified families, respectively. Functional analysis using PICRUSt showed a diverse range of functional pathways. These findings have significant implications for policymaking regarding food safety and public health. Regular monitoring of bacterial communities in meat products is crucial to ensure their safety for consumption. This study demonstrates the utility of culture-independent approaches in characterizing microbial communities, which can provide valuable information for ensuring food safety and safeguarding public health.
Supplementary information: The online version contains supplementary material available at 10.1007/s12088-024-01249-y.
Keywords: 16S rRNA sequencing; Bacterial load; Diversity indices; Microbial diversity; Next generation sequencing.
© Association of Microbiologists of India 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.