5-Fluorouracil (5-FU) resistance poses a significant challenge in the treatment of rectal cancer, driving the need for novel therapeutic strategies. In this study, we established 5-FU-resistant rectal cancer cell lines (SW837-r, SNU-C1-r) and identified homoharringtonine (HHT) as a potent and selective anticancer agent through high-throughput drug screening of 291 compounds. HHT displayed the highest selective drug sensitivity score (sDSS), showing strong activity against resistant cells while sparing normal rectal epithelial cells. Further investigations revealed that 5-FU-resistant cells exhibited enhanced mitochondrial biogenesis and function compared to normal cells, and HHT exerted its cytotoxic effects by targeting mitochondrial respiration. HHT significantly reduced oxygen consumption rate (OCR), mitochondrial complex I activity, and ATP production in resistant cells, with mitochondrial respiration-deficient ρ0 cells showing reduced sensitivity to HHT. In vivo, HHT alone reduced tumor growth by 60 % in the resistant xenograft model. In the sensitive xenograft model, combination therapy with 5-FU achieved an 85 % reduction in tumor volume compared to controls, with tumors in the combination group displaying minimal regrowth. These results demonstrate that HHT effectively targets mitochondrial function in resistant rectal cancer cells and, in combination with 5-FU, offers synergistic antitumor effects and prolonged tumor suppression. The favorable safety profile of HHT further highlights its potential as a promising therapeutic agent for overcoming 5-FU resistance in rectal cancer.
Keywords: 5-FU resistance; DSS; HHT; High-throughput drug screening; Mitochondrial respiration; Rectal cancer.
Copyright © 2024 Elsevier Inc. All rights reserved.