Background/Objectives: Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer with limited treatment options. The nuclear export protein XPO1 has emerged as a potential therapeutic target in cancer, but its role in TNBC has not been fully characterized. This study investigates the potential of repurposing selinexor, an FDA-approved XPO1 inhibitor, as a novel therapeutic options for TNBC. Methods: A computational drug repurposing pipeline was used to predict patient tumor responses to hundreds of drugs. We identified XPO1 inhibitors as a candidate drug and validated its efficacy on an independent patient dataset and across various TNBC cell lines. RNA-sequencing after longitudinal XPO1 inhibition and further mechanistic studies were performed to explore and confirm the leading causes of TNBC cell sensitivity to XPO1 inhibition. Results: Selinexor significantly reduce the viability of a variety of TNBC cell lines. Mechanistically, selinexor induces TNBC cell death by inhibiting the NF-kB pathway through nuclear retention of NFKBIA. This effect was consistent across multiple TNBC cell lines. Conclusions: XPO1 inhibitors show promise as targeted therapies for TNBC patients. New mechanistic insight into the causes leading to TNBC sensitivity to XPO1-inhibition-mediated cell death warrant further clinical trials to evaluate the safety and efficacy in TNBC.
Keywords: NFKBIA; RNA-seq; XPO1; selective inhibitors of nuclear export (SINEs); triple-negative breast cancer (TNBC).