This study introduces a quantitative risk assessment (QRA) model aimed at evaluating the risk of invasive listeriosis linked to the consumption of ready-to-eat (RTE) smoked and gravad fish. The QRA model, based on published data, simulates the production process from fish harvest through to consumer intake, specifically focusing on smoked brine-injected, smoked dry-salted, and gravad fish. In a reference scenario, model predictions reveal substantial probabilities of lot and pack contamination at the end of processing (38.7% and 8.14% for smoked brined fish, 34.4% and 6.49% for smoked dry-salted fish, and 52.2% and 11.1% for gravad fish), although the concentrations of L. monocytogenes are very low, with virtually no packs exceeding 10 CFU/g at the point of sale. The risk of listeriosis for an elderly consumer per serving is also quantified. The lot-level mean risk of listeriosis per serving in the elderly population was 9.751 × 10-8 for smoked brined fish, 9.634 × 10-8 for smoked dry-salted fish, and 2.086 × 10-7 for gravad fish. Risk reduction strategies were then analyzed, indicating that the application of protective cultures and maintaining lower cold storage temperatures significantly mitigate listeriosis risk compared to reducing incoming fish lot contamination. The model also addresses the effectiveness of control measures during processing, such as minimizing cross-contamination. The comprehensive QRA model has been made available as a fully documented qraLm R package. This facilitates its adaptation for risk assessment of other RTE seafood, making it a valuable tool for public health officials to evaluate and manage food safety risks more effectively.
Keywords: brined fish; exposure assessment; gravlax; listeriosis; salted fish; simulation.