Seed film-coatings used for seed treatment often contain microplastics which must be replaced. The objective of this study is to analyze the influence of substitutes (maltodextrin, waxy maize glucose syrup (WMGS), methylcellulose, tragacanth gum (TG), arabic gum (AG), polyvinyl alcohol (PVA), ethoxylated rapeseed oil (ERO)), and xanthan gum as a thickener on the stability of a seed film-coating via Static Multiple Light Scattering (SMLS) technology. The results demonstrate that the incorporation of each polymer results in an increase in the quantity of particles migrating from the supernatant phase, but a concomitant decrease in their sedimentation rate and in the thickness of the supernatant phase (ec). Furthermore, the redispersion capacity (Cd) of the particles in the seed film-coating is also decreased after the introduction of each polymer, potentially due to their adsorption to the particles. The impact of the thickener is contingent upon the specific polymer employed. Its incorporation reduces the number of particles migrating from the supernatant phase and their sedimentation rate for all of the polymers studied except AG and ERO. However, it reduces ec for all seed film-coatings. Depending on the substitutes, thickener incorporation either improves (WMGS, maltodextrin, AG) or deteriorates (TG, PVA, ERO) Cd. The formulation containing tragacanth gum shows a redispersing capacity with Cd ≤ 1. This study introduces a novel analytical criterion, the redispersion capacity Cd, which can be employed to characterize dispersed systems.
Keywords: microplastics; seed film-coatings; static multiple light scattering (SMLS).