This paper presents the results of a study on the characteristics of semiconductor sensors based on thin SnO2 films modified with antimony, dysprosium, and silver impurities and dispersed double Pt/Pd catalysts deposited on the surface to detect carbon monoxide (CO). An original technology was developed, and ceramic targets were made from powders of Sn-Sb-O, Sn-Sb-Dy-O, and Sn-Sb-Dy-Ag-O systems synthesized by the sol-gel method. Films of complex composition were obtained by RF magnetron sputtering of the corresponding targets, followed by technological annealing at various temperatures. The morphology of the films, the elemental and chemical composition, and the electrical and gas-sensitive properties were studied. Special attention was paid to the effect of the film composition on the stability of sensor parameters during long-term tests under the influence of CO. It was found that different combinations of concentrations of antimony, dysprosium, and silver had a significant effect on the size and distribution of nanocrystallites, the porosity, and the defects of films. The mechanisms of degradation under prolonged exposure to CO were examined. It was established that Pt/Pd/SnO2:0.5 at.% Sb film with optimal crystallite sizes and reduced porosity provided increased stability of carbon monoxide sensor parameters, and the response to the action of 100 ppm carbon monoxide was G1/G0 = 2-2.5.
Keywords: carbon monoxide (CO) sensor; rare earth element (Dy); silver; stability; thin film; tin dioxide.