With the growth in road transport volume and increasingly stringent environmental regulations, the use of lightweight dump trucks not only reduces fuel consumption but also enhances transport efficiency, aligning with the principles of green development. It has now become a key focus in the field of heavy-duty vehicle research. The carriage is located at the rear of the dump truck, connected to the chassis, and serves as the box for carrying cargo, making its strength and durability crucial. As one of the important components of heavy-duty vehicles, the carriage accounts for 15% to 25% of the total vehicle weight, and its weight reduction efficiency is significantly higher than that of other vehicle systems. This paper presents a prefabricated carriage structure based on basalt fiber composite panels combined with a metal frame, achieving the lightweight design of the carriage while meeting the stringent requirements for high load-bearing capacity and strength in heavy-duty vehicles, and significantly improving assembly and production efficiency. Given the complex working environment and diverse loading demands of heavy vehicles, this study incorporates real operating conditions of dump trucks, utilizing theoretical calculations and design analyses to construct finite element models for various scenarios, followed by detailed numerical simulations in ABAQUS (2023). Additionally, a bending-shear test of the side panel was designed and conducted to validate the accuracy of the finite element model, with comparative analysis performed between simulation results and experimental data, effectively assessing the safety and reliability of this lightweight composite carriage structure. The results indicate that the designed carriage not only meets the strength, stiffness, and impact resistance requirements of current heavy-duty carriages but also significantly reduces the carriage weight. This research provides scientific reference and engineering value for the application of composite materials in the lightweight design and structural optimization of dump trucks.
Keywords: composite material carriage; finite element simulation; lightweight; reliability validation analysis.